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Normally, during one-dimensional pipe flow, the friction terms are calculated with the use of
a numerical method (for example MOC – method of characteristics) at every computational
node along the pipe and at every time step. This procedure tends to increase the compu-
tational effort greatly. A considerable increase in computational speed can be archived by
calculating the frequency-dependent friction at the end of the pipe only. To avoid possible
problems (no damping at closed walls, underestimate damping on high impedance compo-
nents) the frequency-dependent friction term is calculated from the flow waves. The lumping
friction model in this work is based on a modificated Schohl convolution integral solution. In
addition, the work examined the impact of using of simplified effective weighting function on
the obtained results of numerical simulations. The modified method in conjunction with the
use of simplified weighting function allow determination of real-time estimate of the basic
parameters representing the fluid flow in complex hydraulic systems, water supply, etc.
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1. Introduction

In a transient liquid pipe flow velocity and pressure are changing with time. In fluid systems,
transient occurs during starting-off or stopping of a pump, closing or opening a valve, or changes
in tank levels. Often transient flow conditions persist as oscillating pressure and velocity waves
for some time after the initial event that caused it. A water hammer is an example of that
condition where the compressibility of the fluid has the dominant effect after a sudden closure
of the valve. A transient flow can also result in significant transient pressures that may exceed
the design limit of pipes and fittings, especially when the designer calculated it from a very well
and most known Joukovsky formula. Detailed understanding of the transient flow is then very
important for safe operating of fluid systems.

The hereby study refers to numerical modelling of unsteady flow in pressure conduits. It takes
into account the friction loss coefficient as a total of quasi-steady and time-variable coefficient.
The time-variable coefficient is calculated with the use of a new effective solution of convolution
integral (Urbanowicz and Zarzycki, 2012). The study comprises detailed comparison of numerical
results with the use of the conventional method (hydraulic resistance calculated in all computer
nodes as a total of two components) and the lumped method (where the resistance coefficient
is determined in a simplified way – discussed in detail in the present study), see also Johnston
(2006). The results presented in the study show whether the simplified method will be consistent
enough to be successfully employed in practice.
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2. Modelling of the coefficient of friction losses

During unsteady flow of a liquid in pressure conduits, the value of the friction factor λ depends
on the averaged flow velocity

λ = λq +
32

|Re|v
S (2.1)

where λq is the quasi-steady friction coefficient, Re – Reynolds number, v – average current flow
velocity.

On the other hand, the sum S is determined from the below correlation (Urbanowicz and
Zarzycki, 2012)

S =
j
∑

i=1

[yi(t)Ai + ηBi(v(t+∆t) − vt) + (1− η)Ci(vt − v(t−∆t))]
︸ ︷︷ ︸

yi(t+∆t)

(2.2)

where η is the corrective coefficient (for details, see Urbanowicz and Zarzycki, 2012), yi(t) – a
time-variable parameter which is a value of the above total calculated for the previous time step,
Ai, Bi and Ci – constants which are more widely discussed later, v – average flow velocity in a
proper time stop.

In the laminar flow, the quasi-steady resistance coefficient (the subscript ql) does not depend
on the roughness of the walls and is determined from the below correlation

λql =
64

|Re|
(2.3)

On the other hand, in the turbulent flow (hence the subscript qt), the impact of the internal
geometrical structure of the walls must not be neglected and it has influence on the resistance
coefficient value (Colebrook, 1939)

1
√
λqt
= −2 log

( 2.51

Re
√
λqt
+
ε/D

3.7

)

(2.4)

where ε/D is the relative roughness of the pipeline internal walls.

The above empirical Colebrook equation may be solved by numerical methods with high
accuracy. There are also analytical approximations of the above formula which determines the
friction coefficient in turbulent flows. The best approximation form was given by Goudar and
Sonnad (2008) (for details see Appendix A).

The research carried out recently has shown that a sufficient condition for correct (as ac-
curately as required) modelling of hydraulic resistances occurring in course of unsteady states
in conduits is constructing the sum S of just two terms. Constants Ai, Bi and Ci occurring in
formula (2.2) for this total are calculated from the following correlations

Ai = e
−ni∆t̂ Bi =

mi

∆t̂ni
(1−Ai) Ci = AiBi (2.5)

The above correlation shows that the constants Ai, Bi and Ci depend on the dimensionless time
step (constant in the method of characteristics) as well as coefficients mi and ni describing the
so-called effective weighting function

∆t̂ = ∆t
v

R2
weffective =

j
∑

i=1

mie
−ni∆t̂ (2.6)
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The integral of the aforementioned weighting function multiplied by the derivative of the liquid
local velocity is defined as the so-called convolution integral. It is a result of a reverse Laplace
transform of the correlation describing the impedance of the hydraulic system presented by
Brown (1962). This integral describes the unsteady component of the wall shear stress. It was
presented for the first time by Zielke (1968). It takes the following form

τu =
2µ

R

t∫

0

w(t− u)
∂v

∂t
(u) du (2.7)

Rquation (2.7) may obviously be used also for the unsteady turbulent flow (Zarzycki, 1997, 2000;
Vardy and Brown, 2003, 2004) if the weighting function is known.
The classic solution of the integral (2.7) employed in the method of characteristics is inef-

fective because the calculation of the momentary value τu in the conduit cross section being
analysed requires knowledge and use of the entire flow history. Trikha (1975) showed, however,
that this solution can be presented in an effective form which allows avoiding the need to store
and use the data referring to the average velocity changes occurring in time from the moment
of occurrence of the unsteadiness in a specific point of the conduit. In the case of the Trikha
method, it is sufficient to know the last two average flow velocities occurring in the current time
moment at a specific pipe cross section. Subsequent researchers have perfected the Trikha solu-
tion. There are known effective solutions by Kagawa et al. (1983), Schohl (1993) or Urbanowicz
and Zarzycki (2012).
The recently carried out benchmark tests of these effective solutions have shown that

(Urbanowicz-Zarzycki, 2012):

• the Trikha solution was derived with too many simplifications and it is not suitable for
the correct modelling of resistances,

• the solution by Kagawa and others has its classical counterpart in the solution according
to Zielke (1968),

• the Schohl solution has its classical counterpart in Zielke-Vardy-Brown solution (Vardy and
Brown, 2010) on condition that the weighting function is expressed with a large number
of exponential terms (which increases the time of calculation),

• the Urbanowicz-Zarzycki solution is an effective counterpart of the Zielke-Vardy-Brown
classical solution but it does not require expressing the effective weighting function with
a large number of exponential terms.

Further in the present study, a solution in form of (2.2) presented at Conference of Fluid Me-
chanics (KKMP2012) held in Gliwice will be used (Urbanowicz-Zarzycki, 2012).
Formula (2.1) shows that when lower velocities are dealt with, bigger is the influence of flow

unsteadiness on the momentary value of the resistance coefficient. It can be stated that for large
Reynolds numbers (Re > 106), the coefficient λu can be entirely negligible since λu ≪ λq.

3. Research results

The correct modelling of hydraulic resistances occurring in hydraulic, water supply pipeline and
heating systems in unsteady flow conditions is still not commonly employed in the design stage
using specialised software. Most of the common computer programmes continue to be based on
an ordinary quasi-steady approach which should not be used in the case of unsteady flows. There
is no doubt that the developers of the commercial software dedicated to the modelling of flows
are not interested in the correct modelling of resistances because of the mathematical complexity
of the known correct solution. Therefore, this study has been dedicated to the comparison of
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the results of numerical research obtained from simplified effective methods of the modelling of
the hydraulic resistances. The analysis of literary sources shows that there are two approaches
which can possibly be adapted while determining hydraulic resistances with the use of the MOC
method of characteristics:

• Standard Effective Method (SM) – the resistances are determined for all analysed cross
sections (mostly, there are 16 cross-sections being analysed as the division into such a
number ensures that the results obtained are sufficiently accurate) and all time steps with
the use of effective solutions of the convolution integral which are based on the effective
weighting function, which have been expressed in the previously presented form (2.6)2;

• Lumped Friction Method (LFM) – the unsteady hydraulic resistances are determined only
in the boundary cross-sections, while only the quasi-steady resistances are determined in
the internal cross-sections (Johnston, 2006).

According to the study by Johnston (2006), in the last of the aforementioned approaches, the
momentary values of velocities in boundary nodes (Fig. 1) should be corrected in the following
manner

vRB,c =
1

2

(

vRB,r +
pRB,r
ρc

)

vLB,c =
1

2

(

vLB,r +
pLB,r
ρc

)

(3.1)

where vRB,c and vLB,c are subsequently, velocities corrected at the right and the left boundary,
vRB,r and vLB,r – velocities calculated in the classical way on the right and the left boundary,
ρ – fluid density, c – pressure wave propagation velocity, pRB,r and pLB,r – pressures at the right
and the left boundary of the system, respectively.

Fig. 1. Method of characteristic grid

The corrected velocity values are used in numerical calculations of the unsteady corrected
hydraulic resistance coefficient λu, Eqs. (2.1) and (2.2).
The below study examines in detail not only the influence of the method of calculation (the

SM standard method or the LFM lumped friction method) but also the correlation between the
amount of terms constituting the effective function of weight and the quality of the results ob-
tained. The detailed examination comprises forms of the effective weighting functions composed
of the exponential terms 11, 4, 3, 2 – ver. I and 2 – ver. II (for detailed information about the
coefficients, see Appendix B). The percentage errors of the adjustment of the above effective
weighting functions with respect to Zielke (1968) classical weight are presented in Fig. 2.
The results of the numerical tests carried out with the use of the above methods SM and LFM

as well as various forms of the effective weighting function will be compared against the results
of experimental tests of pressure change trends in course of hydraulic impact of water hammer.
The experimental research was registered by Adamkowski and Lewandowski (2006, 2012) at the
test facility (Fig. 3) situated at the Institute of Fluid-Flow Machinery of the Polish Academy
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Fig. 2. Effective weighting function errors

of Sciences (PAN) in Gdańsk. This study focused on four experimental courses obtained at the
following initial velocities:

• Re = 1111, v0 = 0.066m/s (Adamkowski and Lewandowski, 2006)

• Re = 6899, v0 = 0.47m/s (Adamkowski and Lewandowski, 2012)

• Re = 25040, v0 = 1.7m/s (Adamkowski and Lewandowski, 2012)

• Re = 40358, v0 = 2.74m/s (Adamkowski and Lewandowski, 2012)

Fig. 3. Layout of the test stand

In the flow in which the phenomenon of liquid column separation occurs, commonly known as
vapour cavitation, pressure pulsations can be much greater than those which might be calculated
from the commonly used Joukovsky formula

∆p = ρc∆v (3.2)

This is related to the occurrence of sudden accelerations of fluid at the moment when the mo-
mentary vapour cavitation areas are closed (Simpson and Wylie, 1991). Therefore, the turbulent
courses during which liquid column separation took place play such an important role in this
study.

The simulation of unsteady flows with cavitation in the present study employed the use of
the cavitation model according to Adamkowski and Lewandowski (2009) in which the artificial
dampening taking place in the classical column separation model has been eliminated.

The numerical courses obtained as a result of the simulation have been compared against
the experimental courses by means of a simple quantitative method which has been used to
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determine time correctness – the parameter Et (times of occurrence of pressure maximums
within subsequent amplitudes of the course of pressure – Fig. 4)

Et =
1

k

k∑

i=1

∣
∣
∣
tis − tie
tie

∣
∣
∣ · 100% (3.3)

where tis are – subsequent times for which a local pressure maximum occurred, tie – the same
times in the experimental course, k – number of pressure amplitudes being analysed.

Fig. 4. Analyzed pressures peaks

The value correctness is defined by the parameter Ep (the analysis covered values of maxi-
mum pressures on subsequent amplitudes – Fig. 4)

Ep =
1

k

k∑

i=1

∣
∣
∣
pis − pie
pie

∣
∣
∣ · 100% (3.4)

where pis are maximum values of simulated pressures on subsequent pressure amplitudes, pie –
maximum values of pressures on subsequent amplitudes recorded during the experiment.
The Tables 1-4 include all obtained results of the quantitative analysis. Furthermore, the

smallest errors in these tables have been marked bold face to make them attract special attention.

Tabel 1. Errors parameters (for laminar flow v0 = 0.0066m/s)

Type of Standard unsteady Lumped unsteady
weighting friction – SM friction – LFM
function Et Ep Et Ep

2 terms – ver. I 0.693314 0.318876 0.865383 0.292364

2 terms – ver. II 0.693426 0.560728 0.88126 0.430243

3 terms 0.703865 0.409423 0.88045 0.465801

4 terms 0.702829 0.411929 0.875647 0.514488

11 terms 0.702829 0.352031 0.863143 0.30647

3.1. Laminar flow results

The obtained results of the numerical tests for laminar flow show (Table 1) that the simulated
changes of pressure by the SM standard method and the LFM method with unsteady resistance
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Tabel 2. Errors parameters (for turbulent flow v0 = 0.45m/s)

Type of Standard unsteady Lumped unsteady
weighting friction – SM friction – LFM
function Et Ep Et Ep

2 terms – ver. I 1.700704 17.92573 1.010862 15.49663

2 terms – ver. II 2.859451 17.6086 2.333399 21.32954

3 terms 1.977994 16.17788 1.177909 15.0219

4 terms 2.463139 17.34088 1.784986 10.85285

11 terms 2.13715 15.41202 1.628331 13.00306

Tabel 3. Errors parameters (for turbulent flow v0 = 1.7m/s)

Type of Standard unsteady Lumped unsteady
weighting friction – SM friction – LFM
function Et Ep Et Ep

function Et Ep Et Ep

2 terms – ver. I 2.979111 3.342316 2.269701 5.367631

2 terms – ver. II 2.696019 4.498614 1.85463 6.653467

3 terms 2.733686 4.344046 2.761818 5.027982

4 terms 2.329251 4.200977 2.600806 3.812173

11 terms 2.860539 3.923151 2.419137 6.48246

Tabel 4. Errors parameters (for turbulent flow v0 = 2.76m/s)

Type of Standard unsteady Lumped unsteady
weighting friction – SM friction – LFM
function Et Ep Et Ep

2 terms – ver. I 2.123979 2.606999 2.126099 6.09562

2 terms – ver. II 2.478371 3.962234 2.292239 3.336577

3 terms 2.309905 3.883457 2.177465 4.336589

4 terms 2.20718 3.934879 2.740817 1.863973

11 terms 2.20718 3.835296 1.87071 4.136423

lumped in boundary nodes (lumped friction model) featured similar accuracy. The average value
(computed based on the results obtained for all five effective functions of weigh under analysis) of
the parameter Ep defining the degree of conformity of the simulated pressure peaks in reference
to the experimental results employing the use of the SM and LFM methods was very close to
EpSM = 0.41% and EpLFM = 0.40%. The time coincidence of the pressure peaks determined
by means of the parameter Et, the second parameter calculated in the quantitative method, is
slightly worse for the average results obtained by means of the LFM method (EtSM = 0.7% and
EtLFM = 0.87%).

What is interesting is that the best result of the parameter Ep is obtained with the use of the
LFM method and an effective function of weigh composed of just two terms (2 terms – ver. I).
This confirms the fact that, in the case of laminar flows, it is possible to adjust the effective
weighting function in such a way that the obtained results will coincide with those obtained with
the use of very accurate effective functions of weight (composed of a large number of exponential
terms and therefore requiring many more calculations in order to estimate the momentary local
resistances).
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3.2. Turbulent flow results

a) v0 = 0.45m/s

The average results calculated from Table 2 shows that the time coincidence of pressure
peaks (parametr Et) occurring while using the SM standard method is insignificantly worse
(EtSM = 2.23%) than in the case of the LFM method (EtLFM = 1.59%). Even more interesting
results have been obtained for the Ep parameter which is more important from the practical
point of view. As a matter of fact, it can be seen that a similar error has been obtained by using
the SM method with a very accurate function of weight (11 terms) Ep(SM−11 terms) = 15.4% as
by using the LFM method and a very inaccurate function of weight consisting of just two terms
Ep(LFM−2 terms ver. I) = 15.5%.

The course bearing the smallest error is the one simulated by means of the LFM method
with the use of a weighting function composed of 4 exponential terms Ep(LFM−4 terms) = 10.85%
(Fig. 5). It is also worth noticing that the analysis of the first two results obtained by means
of the LFM method with the use of weighting functions composed of just two terms shows that
the influence of the course of the effective weighting function is crucial; therefore, the span of
the result

Ep(LFM−2 terms ver. II) − Ep(LFM−2 terms ver. I) = 5.83%

obtained between these two examinations is rather large.

At the present stage of the research, it is, however, difficult to determine how to optimally
select the shape of the effective weighting function and on what to focus at the stage of determi-
ning the coefficients which describe it, so as to ensure that, with a small number of terms, the
simplified numerical results are represented with an error similar to that of the accurate results.

Fig. 5. Pressure variation results at the valve (v0 = 0.45m/s, 4 terms eff. weighting function)

b) v0 = 1.7m/s

In the analysed case, slightly better average results determining the time coincidence of
the occurrence of the pressure course maximum values have been obtained with the use of
the simplified LFM method: EtSM = 2.72% and EtLFM = 2.38%. The average values of the
parameter Ep for the two analysed methods have shown that the SM standard method is better
at simulating maximum pressures for higher Reynolds numbers: EpSM = 4.06% and EpLFM =
5.47%. It must not be left unnoticed that also in this case a very good results has been obtained
by means of the simplified LFMmethod and the weighting function composed of four exponential
terms: Ep(LFM−4 terms) = 3.81%. The result obtained is lower than the average results, which
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confirms that if the effective weighting function is selected properly, it is possible to obtain a
very good course of pressure which is coincident with the experiment by using the simplified
LFM method.

c) v0 = 2.76m/s

The last case of the turbulent flow to be analysed concerns the flow with an initial velocity
of v0 = 2.76m/s. The average values of the parameters Ep and Et for the two analysed methods
are: EpSM = 3.64%, EpLFM = 3.95%, EtSM = 2.26% and EtLFM = 2.24%. So, the average results
are comparable. This is confirmed by the fact noticed in the course of the analysis of formula
(2.1)which becomes more accurate as the average flow velocity increases and the influence of
the unsteady resistance coefficient λu decreases. The best results of the parameter Ep are again
obtained with the use of a weighting function composed of 4 exponential terms Ep(LFM−4 terms) =
1.86% (Fig. 6), which finally confirms the possibility of commonly using the simplified LFM
method while modelling the unsteady hydraulic resistances in pressure conduits.

Fig. 6. Pressure variation results at the valve (v0 = 2.76m/s, 4 terms eff. weighting function)

4. Conclusions

The presented study compares the research results obtained with the use of the two methods
being analysed. In the first of these methods, SM (the standard method), the hydraulic resistance
coefficient has been determined in all computational nodes of the methods of characteristics
with the use of formula (2.1). In the second method, the so-called lumped method (LFM), the
resistance coefficient has been determined with the use of the same formula (2.1), but the sum S
found in formula (2.2) is calculated only in the case of boundary nodes while in all internal
nodes S = 0 is implied (that is, as a matter of fact, the hydraulic resistances are determined in
these internal nodes in a quasi-steady way).
The results obtained in the study have shown that the simplified LFM method can be used

for the modelling of transient pressure courses with a high accuracy. As a matter of fact, using
this method, features a degree of accuracy which is close to that obtained when using a method
causing much higher computer workload. The results also show that it is possible to achieve
very good results in laminar flows by using a very simple effective weighting function composed
of just two exponential terms. In the case when the LFM method is used for turbulent flow, the
best results would be obtained for an effective weighting function composed of four terms. On
the other hand, in the SM standard method, very good results are obtained in the modelling of
turbulent flows when simplest weighting function composed of two terms is used.
The results obtained for a flow qualified as turbulent and featuring a small Reynolds number

of Re = 6899 show too high error level (Ep ≈ 15%). It is difficult to clearly determine the cause
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of such a significant error. It is possible that this is caused by the fact that the Adamkowski
and Lewandowski model used for the modelling of sizes of cavitation areas does not take into
account the influence of gas cavitation or the nature of unsteady resistances occurring in the
course of the transition flow (2320 < Re < 104) has not been recognised well enough, thus being
responsible for the erroneous shape of the weighting function.
At the next stage of the research, it will be necessary to precisely specify the influence of the

shape of the effective weighting function. This study shows that a slight offset of the range of
usability of the function used (2 terms – ver. I and 2 terms – ver. II) has rather a considerable
impact on the obtained results. Determining the influence of the shape of the function will be
the last step towards a simple one-dimensional modelling of the hydraulic resistance.

A. Appendix – Goudar-Sonnad turbulent friction factor

λqt =
[

G1
(

G9 + ln
G3
G5

)]
−2

(A.1)

where

G1 =
2

ln(10)
G2 =

ε/D

3.7
G3 =

ln(10)Re

5.02

G4 = G2G3 + lnG3 G5 = G
G4/(G4+1)
4 G6 = G2G3 + ln

G3
G5

G7 = ln
G5
G6

G8 = G7
G6
G6 + 1

G9 = G8
(

1 +
G7/2

(G6 + 1)2 + (G7/3)(2G6 − 1)

)

B. Appendix – Coefficients of used in simulations effective weighting functions

2 terms – ver. I: m1 = 7.35, m2 = 61.2, n1 = 138.2, n2 = 7984.8

2 terms – ver. II: m1 = 4.9, m2 = 43.2, n1 = 79.9, n2 = 4027

3 terms: m1 = 4.19, m2 = 17.65, m3 = 73.6, n1 = 79.91, n2 = 1424.8, n3 = 24788

4 terms: m1 = 3.96, m2 = 11.97, m3 = 37.53, m4 = 118.5, n1 = 79.91, n2 = 981.8, n3 = 10060,
n4 = 100896

11 terms: m1 = 1, m2 = 0.9997, m3 = 1.0047, m4 = 1.245, m5 = 2.328, m6 = 4.43,
m7 = 8.08, m8 = 14.34, m9 = 25.15, m10 = 43.87, m11 = 76.34, n1 = 26.3744, n2 = 70.85,
n3 = 135.07, n4 = 226.2, n5 = 417.6, n6 = 946.8, n7 = 2492.2, n8 = 7100, n9 = 20955,
n10 = 62745, n11 = 188918

The above coefficients of the effective weighting function have been estimated with the use
of a computational algorithm described in the study by Urbanowicz (2012).
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